Dr. Stefano Filipazzi Dr. Alapan Mukhopadhyay Léo Navarro Chafloque EPFL, fall semester 2024 AG II - Schemes and sheaves

Exercises – week 3

Exercise 1. Nilradical. Let R be a ring. Denote by

$$nil(R) := \{ f \in R \mid f \text{ is nilpotent} \}.$$

(1) Show that

$$\operatorname{nil}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}.$$

(2) Show that for an ideal $I \subset R$, we have $V(I) = \operatorname{Spec}(R)$ if and only if every element of I is nilpotent, meaning $I \subset \operatorname{nil}(R)$.

Exercise 2. Spec is an adjoint. Let (X, \mathcal{O}_X) be a scheme and A a ring. Show that the induced map on global sections

$$\operatorname{Hom}_{\operatorname{Sch}}((X, \mathcal{O}_X), \operatorname{Spec}(A)) \to \operatorname{Hom}_{\operatorname{Ring}}(A, \mathcal{O}_X(X))$$

is bijective. This implies that

Spec: Ring
$$^{op} \to \operatorname{Sch}$$

is a right adjoint. In particular colimits of rings are sent to limits of schemes.

Remark. The above remains true if we replace Sch by the category of locally ringed spaces $\operatorname{Top_{Ring}^{loc}}$. This characterizes Spec as the right adjoint of the global sections functor $\operatorname{Top_{Ring}^{loc}} \to \operatorname{Ring}^{op}$. This formalize the saying that $\operatorname{Spec}(R)$ is the universal (locally ringed) space such that R is the ring of global functions on this space.

Exercise 3. Reduced schemes. A scheme (X, \mathcal{O}_X) is reduced if for all opens U of X the ring $\mathcal{O}_X(U)$ is reduced.

- (1) Show that a scheme (X, \mathcal{O}_X) is reduced if and only if for all $x \in X$ the stalk $\mathcal{O}_{X,x}$ is a reduced ring.
- (2) Show that an affine scheme $\operatorname{Spec}(A)$ is reduced if and only if A is a reduced ring.

The reduction of a scheme X is a scheme X_{red} together with a map $\iota: X_{red} \to X$ with the property that for every map $Y \to X$ where Y is a reduced scheme, then Y factors uniquely to ι .

- (3) Show that if $X = \operatorname{Spec}(A)$ then $\operatorname{Spec}(A/\operatorname{nil}(A)) \to \operatorname{Spec}(A)$ is the reduction of $\operatorname{Spec}(A)$.
- (4) Show that the reduction of any scheme exists and that $\iota: X_{red} \to X$ is a homeomorphism.

Exercise 4. Residue fields and rational points. Let (X, \mathcal{O}_X) be a scheme, $x \in X$ and $k(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$ the residue field at x.

- (1) Let K be a field. Show that a map $\operatorname{Spec}(K) \to X$ with topological image x amounts to a field extension $k(x) \to K$.
- (2) Let k be a field. Fix $X \to \operatorname{Spec}(k)$ a map for the rest of the exercise. Show that for all $x \in X$, k(x) is naturally a field extension of k.
- (3) We say that $x \in X$ is k-rational if the natural extension of last item $k \to k(x)$ is an isomorphism. Show that the set of k-rational points of X is identified with the set of maps $\operatorname{Spec}(k) \to X$ such that the composite $\operatorname{Spec}(k) \to X \to \operatorname{Spec}(k)$ is the identity.
- (4) Let now $X = \operatorname{Spec}(k[x_1, \ldots, x_n]/(f_1, \ldots, f_m)) \to \operatorname{Spec}(k)^1$, where f_1, \ldots, f_m are polynomials. Show that the set of k-rational points of X is identified with the set of solutions in k^n of the system of polynomials f_1, \ldots, f_m .

Exercise 5. Exceptional functors (1). Let X be a topological space. Let $j: U \to X$ be an open subset and $\iota: Z \to X$ its closed complement. We work with categories of sheaves of abelian groups on these spaces.

- (1) Consider $\mathcal{F} \in \operatorname{Sh}_{\operatorname{Ab}}(Z)$. Compute every stalk of $\iota_*\mathcal{F}$.
- (2) Show that ι_* is exact.
- (3) Give an example to show that j_* is not exact.

Consider $\mathcal{G} \in \operatorname{Sh}_{\operatorname{Ab}}(U)$. We define the extension by zero or exceptional direct image $j_!\mathcal{G}$ to be the sheafification of the presheaf defined by $V \mapsto \mathcal{G}(V)$ if $V \subset U$ and 0 otherwise.

(4) Show that for every sheaf $\mathcal{H} \in \operatorname{Sh}_{\operatorname{Ab}}(X)$ there is a natural exact sequence

$$0 \to j_! j^{-1} \mathcal{H} \to \mathcal{H} \to \iota_* \iota^{-1} \mathcal{H} \to 0.$$

(5) Show that there is a natural bijection in $\mathcal{G} \in \operatorname{Sh}_{\operatorname{Ab}}(U)$ and $\mathcal{H} \in \operatorname{Sh}_{\operatorname{Ab}}(X)$

$$\operatorname{Hom}_{\operatorname{Sh}_{\operatorname{Ab}}(U)}(\mathcal{G}, j^{-1}\mathcal{H}) \cong \operatorname{Hom}_{\operatorname{Sh}_{\operatorname{Ab}}(X)}(j_!\mathcal{G}, \mathcal{H}).$$

This means that for an open immersion j, we have a sequence of adjoints $j_! \dashv j^{-1} \dashv j_*$.

Exercise 6. Exceptional functors (2). We keep setup and notation as in previous exercise. Let $\mathcal{H} \in \operatorname{Sh}_{\operatorname{Ab}}(X)$.

(1) Show that for every $s \in \mathcal{H}(V)$ for an open V, then

$$\operatorname{supp}(s) := \{ x \in V \mid s_x \neq 0 \}$$

is closed.

(2) Show that \mathcal{H}_Z , the presheaf on X defined by

$$\mathcal{H}_Z(V) = \{ s \in \mathcal{H}(V) \mid \text{supp}(s) \subset Z \cap V \}$$

is a sheaf. Show that $\mathcal{H}_Z(V)$ is the kernel of the map

$$\mathcal{H}(V) \to \mathcal{H}(V \cap (X \setminus Z)).$$

¹Induced by the inclusion $k \to k[x_1, \ldots, x_n]$

- (3) Show that if $V' \subset V$ such that $V' \cap Z = V \cap Z$ then the restriction map $\mathcal{H}_Z(V) \to \mathcal{H}_Z(V')$ is an isomorphism.
- (4) Show that for any sheaf $\mathcal{F} \in \operatorname{Sh}_{Ab}(Z)$ any map $\iota_*\mathcal{F} \to \mathcal{H}$ factors through \mathcal{H}_Z .

We define the exceptional inverse image $\iota^!\mathcal{H} := \iota^{-1}\mathcal{H}_Z$.

(5) Show that there is a natural bijection in $\mathcal{F}\in \operatorname{Sh}_{\operatorname{Ab}}(Z)$ and $\mathcal{H}\in \operatorname{Sh}_{\operatorname{Ab}}(X)$

$$\operatorname{Hom}_{\operatorname{Sh}_{\operatorname{Ah}}(Z)}(\mathcal{F}, \iota^{!}\mathcal{H}) \cong \operatorname{Hom}_{\operatorname{Sh}_{\operatorname{Ah}}(X)}(\iota_{*}\mathcal{F}, \mathcal{H}).$$

This means that for a closed immersion ι , we have a sequence of adjoints $\iota^{-1} \dashv \iota_* \dashv \iota^!$.

Exercise 7. Topological properties of schemes. A topological space X is T_0 if for every pair of different elements $x, y \in X$ there exist an open set U of X such that exactly x or y is in U.

(1) Let X be the underlying topological space of a scheme. Show that X is T_0 .

A topological space is called *irreducible* if it cannot be written as the union of two proper and non-empty closed subsets.

- (1) Show that any non-empty open set of an irreducible topological space is dense.
- (2) Show that if an irreducible topological space X contains at least two points, then X is not Hausdorff.
- (3) Let A be a ring. Show that the topological space $\operatorname{Spec}(A)$ is irreducible if and only if A_{red} is an integral domain.

A topological space is called *sober* if for any non-empty irreducible closed subset $Z \subset X$, there exist a unique point $\eta_Z \in Z$ such that $\overline{\{\eta_Z\}} = Z$. In this case, we call η_Z the *generic point* of Z.

- (1) Show that any Hausdorff topological space is sober.
- (2) Let X be the underlying topological space of a scheme. Show that X is sober.
- (3) Let A be an integral domain. What is the generic point of Spec(A)?